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Airy-Boundary-layer technique developed by Goodman in heat-transfer problems has been 
extended fo coupled phenomena of heat and mass transfer in porous medium. To justify the application of 
the method in heat- and mass-transfer problems, a linear problem with boundary conditions of second and 
third kind respectively has been discussed and results compared with already known exact solutions. A 
non-linear problem where the Luikov number is taken as linearly dependent on temperature and mass- 

transfer potential, has also been discussed and some results have been exhibited graphi~Iiy. 

NOMENCLATURE 

length coordinate; 
thickness of the body in problem; 
temperature ; 
temperature of the surrounding atmos- 
phere ; 
mass-transfer potential ; 
equilibrium value of mass-transfer 
potential ; 
time ; 
thermal conductivity ; 
mass conductivity; 
thermal diffusivity ; 
moisture diffusivity ; 

specific mass capacity ; 
specific heat capacity; 
density of porous skeleton ; 
Soret coefficient; 
coefficient of internal evaporation ; 
specific heat of evaporation; 
surface heat-~ansfer coefficient ; 
mass flux per unit area ; 
heat flux per unit area ; 
non-dimensional length f = x/L) ; 
Luikov number (= a,&~~); 
Kossovitch number ( = pc, AO/c, At); 

t Present address: Heat and Mass Transfer institute, 
25, Podlesnaya, Minsk, BSSR, USSR. 

Pn. 
Ki,, 

Ki, 

Posnov number (= 6, At/A@ ; 
Kirpichev number for mass transfer 

(= q,&%,, A@; 
Kirpichev number for heat transfer 

(= q&//2,4; 
Bi,, Biot number for heat transfer (= &/A,) ; 
Fo, Fourier number (= a,z/P); 

T, non-dimensional temperature 

0. 
( = t - t,/t, - t*) ; 

non-dimensional mass-transfer potential 
(= 60 - e/e, - 0,). 

I~ODU~ION 

RECENTLY Goodman has applied a technique 
known as the “Heat Balance Integral Method” 
to solve some linear and non-linear problems 
in heat transfer. In this paper we extend the 
above technique to the solution of certain 
problems in coupled phenomena of heat and 
mass transfer in porous media. Neglecting 
the convective molar transfer of mass and heat 
these equations are 

at fqx& a@ - = a,v=t + -- 
a7 cq az 
ae 
- = a,V28 + Q,S,V~~. 
at 

(1) 
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In general these equations are non-linear 
because of dependence of a,, aT 6. 6,. etc., on 
temperature and moisture concentration. 

However, for many practical applications. 
calculations are carried out by taking these 
coefficients to be constant by dividing the 
entire range of variation of these coefficients 
into various sub-ranges and solving the above 
equations with average values of these coef- 
ficients, thus making these equations linear, 
This is, however, a necessity of a simple approxi- 
mate method to give useful analytical results 
for the equations where the variation of transfer 
coefficients with temperature and moisture 
transfer potential is taken into account. 

In the application of heat balance integral 
to heat-transfer problems for plates of finite 
thickness it is assumed that a thermal layer 
analogous to the velocity boundary layer exists 
whose thickness grows with time. The thickness 
of this layer is specified by the surface where the 
conditions of zero heat transfer and equality 
of temperature to its initial value are satisfied. 
Therefore, as long as the thickness of the 
thermal layer is less than the thickness of the 
plate it behaves as an infinite medium, as the 
boundary condition on the other end of the 
plate does not matter. At the transition time 
when the thickness of the thermal layer is just 
equal to the plate thickness, the boundary 
condition on the other end comes into play. 
The solution of the problem is thus split up 
into two parts--one valid in the range 0 < r < z’ 
(where r’ is the transition time) and the other for 
higher values of time (i.e. z > 7’). 

In the case of coupled phenomena of heat and 
mass transfer governed by the equations (1) 
the extension of Goodman’s technique en- 
visages the specification of the relative rate of 
heat- and mass-transfer processes, i.e. it is 
essential to differentiate the cases where heat 
transfer precedes mass transfer in the very 
initial stage of the process or vice versa. It has 
been observed that such an assumption re- 
garding the relative rate of the progress of the 
two layers, energy penetration depth and mass 

penetration depth give a relation between the 
transfer coefficients. 

If the exact equations (1) are taken into 
account right from the beginning it becomes 
difficult to obtain explicit relations between the 
transfer coefficients. In a large number ofapplica- 
tions it is known that the term 6, is small and 
is completely neglected in the above equations. 
However, in the approach followed here 6, is 
neglected for the first stage (up till the transition 
time, which is small for moderately thin plates) 
and complete equations of heat and mass 
transfer are solved in the second stage of the 
process. In the first stage, if heat transfer is 
assumed to lag behind the mass transfer we 
find that it envisages a relation 

1 
Lu > 

1 + cKoKi, 
Kr, 

for boundary conditions of second kind, 

or 

Lu > 
1 

1 + .X0 

for boundary conditions of first kind. 

The above inequalities are reversed if the mass 
transfer lags behind the heat transfer in the 
first stage. These inequalities seem to modify 
the crieterion of Luikov (discussed on p. 
173 of reference [l]) 

Lu >< 1. 

In the second stage the procedure followed by 
us is similar to that of Goodman. 

In contrast to Goodman’s method in heat 
transfer, in the case of combined heat and mass 
transfer we have to integrate both the heat- and 
mass-transfer equations leading to the “Energy 
Balance Integral” and “Mass Balance Integral”. 
The solutions then satisfy both heat- and mass- 
transfer equations on an average and therefore 
allow representation of heat- and mass-transfer 
potential in the form of polynomials in the space 
variable with time-dependent coefficients. 
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To illustrate the method, we first discuss the 
case of heat and mass transfer in an infinitely 
long slab of finite width under the boundary 
conditions of the second kind, completely 
neglecting 6,. The results are obtained for both 
the cases, i.e. when heat transfer precedes 
mass transfer and vice versa. 

Secondly we discuss the problem of heat and 
mass transfer in an infinite plate (finite width) 
with the boundary conditions of the third kind. 
In this case, in the first phase we neglect the 
thermal diffusion term while in the second 
phase the complete equations have been taken 
into account. The penetration depth (for heat 
transfer) has been obtained in an implicit 
form for the case when heat transfer precedes 
mass transfer. 

Finally we have discussed a non-linear prob- 
lem where the diffusivities of heat and mass 
transfer have been assumed to vary linearly 
with temperature and mass transfer potential. 
This non-linear problem has been studied with 
the boundary conditions of the first kind at 
one end. The solution has been obtained for 
both the situations, i.e. when heat transfer 
precedes mass transfer and vice versa and the 
results have been graphically depicted. 

at a? EPC, ae -- 
aZ=aqax2+ cq aT 

(1.1) 

ae a28 
z=amsO<x<L (1.2) 

z>o 
t = t, 

1 (1.3) 

e = 80 
OQx<L 

z = O (1.4) 

-i.,&+q,=o 

1 

(1.5) 

n,g+,,=o 

x=L z>o 

(1.6) 

at 0 ax= 
ae 0 
ax” I- (1.7) 

x=0 r > 0. 

(1.8) 

The equations (1.1). (1.2) can be written as 

at a2t a28 
~=L3p+K”Q (1.9) 

EC, E OCXCL r>O 

aT 21 a2 
(1.10) 

where 

K1i = a, 

K,, = yc,,,am n 
% 

K,, = a,,,. 
1. APPLICATION OF THE METHOD TO SOLUTION 
OF A PROBLEM WITH BOUNDARY CONDITIONS 

OF THE SECOND KIND 

Problem. An infinite porous plate of finite 
thickness is initially at temperature t, and 
mass-transfer potential &,. One face of the plate 
(x = 0) is insulated to heat and mass transfer 
while the other face (x = L) is maintained at 
constant heat and mass transfer flux. Neglect- 
ing the thermal diffusion determine the tem- 
perature and mass transfer potential distribu- 
tions inside the plate. 

The differential equations governing the pro- 
cess of heat and mass-transfer together with 
initial and boundary conditions appropriate 
to the above problem are as under : 

First phase 
SOLUTION 

We assume that at any time z the temperature 
and mass disturbances have penetrated inside 
the plate up to the distances S’(r), 6(r) respec- 
tively measured from x = L. The concentra- 
tion and temperature beyond the penetration 
depths remain at initial values, i.e. the condi- 
tions at x = L - 6’ and x = L - 6 are 

t = to 

I 
(1.11) 

at 0 
x=L-6’ 

ax’ 
(1.12) 
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e = e. 

ae 0 
ax= 1 

(1.13) 
x=L-6. 

(1.14) 

Integrating first the mass-transfer equation 
(1.10) from x = L to x = L - 6 and using (1.14) 
we obtain the mass balance integral as 

L-d 

s ae 
_dx= -K ae 
a7 21ax x=L’ 

(1.15) 

L 

Assume a parabolic polynomial profile for 
mass-transfer potential as 

balance integral under the conditions (1.12) and 
~~[~x[~=~-~, = 0 can be written as 

;dx = - K,,t 
ax x=L 

-K !!t! 
12ax x=L’ 

L 
(1.21) 

The polynomial for temperature t (1.20) can 
be determined in terms of 6’ in the first phase 
and 6’ > 6 from conditions (1.5), (l.ll), (1.12) 
and can be written as 

t = t, +2$,(s’ - L + x)2. (1.22) 
4 

e = A, + A,(L - X) + A,(L - x)2 (1.16) 
To determine 6’ we substitute (1.22) in (1.21) 

where A,, A,, A, are functions of time. as we did in the case of mass penetration depth 
The coefficients A,, A,, A2 can be determined 

from three boundary conditions (1.13), (1.14) 
and obtain a 1st order differential equation for 
6’ which when solved gives 

and (1.6) and then 8 can be written as 

& (6 - L + x)2. 
6’(z) = 

J[ ( 
6K, 1 1 - ~PCmam4m~q r (1.23) 

e=eo- (1.17) V&&m >I m as a function of time can now be determined where 6’(O) = 0 is taken as the initial condition. 

by putting 8 from (1.17) into mass balance Substituting 6’ from (1.23) in (1.22) tem- 

integral (1.15). perature profile in the first phase is determined 

Thus we get a first-order differential equation for this caSe (6’ ’ ‘). 
in the form When 6’ < 6. (i.e. when mass transfer pre- 

cedes heat transfer.) 

d(S2) - 6K (1.18) 
In this case the heat balance integral under the 

dz 
21. conditions (1.5). (1.6) and the value of 

The above equation when integrated gives 
%?/axlX,L_~P can be written as 

L-6’ 

&z) = J(6K21~) (1.19) 

where 6(O) = 0 is the initial condition. f 
;dx = - Kll$ + K12pf. (1.24) 

4 m 
r. 

Having determined 6 we obtain 8 from equa- 
tion (1.17). 

We assume similarly a parabolic profile for 
temperature as 

t = B, + B,(L - x) + B,(L - x)2. (1.20) 

On integrating the heat-transfer equation 
(1.9) from x = L to x = L - 6’ we have to 
consider two cases namely 6’ > 6 or 6’ < 6. 

When 6’ > 6. (i.e. when heat transfer pre- 
cedes mass transfer.) In this case the heat 

where the value of ae/axlX,L_g from the mass 
transfer potential profile (1.17) has been used. 

Substituting the value of 6 from (1.19) and of 
t from (1.22) a first-order differential equation 
for 6’ is obtained in the form 

d(S”) __ = 
dz 

&E 
JT 

(1.25) 

where 

A = 6K,, (1.26) 
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(1.27) 

The solution of (1.25) making use of the 
initial condition S’(O) = 0 is 

d.(i)=[J(A+;)-;]&. (1.28) 

Having determined 6’(r) the temperature 
profile in this case can be determined from 
(1.22) by substituting the value of 6’ from (1.28) 
into (1.22) 

The inequalities 6’ 2 6 when expressed in 
terms of transfer coefficients become respectively 

Lu 3 
1 

1 + ~Ko(Ki,,,/Ki,)’ 

We have discussed two cases (S’ 3 6) in the 
first phase and have determined the distribution 
for temperature in each case. We shall now 
pass on to the second phase and shall determine 
the final distributions of temperature in each 
case. It has however to be noted that the two 
situations are only relevant to temperature 
distributions, mass-transfer equation being in- 
dependent. 

Second phase 
The idea of penetration distance ceases to be 

valid when the energy or mass penetration 
depth reaches the other face of the plate and 
we have to take into account the boundary 
conditions at the other face. and the profiles 
have to be redetermined to include the effect 
of this boundary. Moreover, two conditions 
which are satisfied at the end of the mass or 
energy layer are replaced only by one boundary 
condition at this face (x = L) and out of three 
constants for the parabolic profile only two 
can be determined, the third has to be deter- 
mined from the balance integral. However, if 
higher polynomials are used, the other con- 
stants can be determined from some derived 
conditions and the differential equations. 

The initial distributions for the second phase 

can be obtained from first phase distributions 
by putting 6’ or 6 = L. 

When 6’ > 6. The initial distributions of 
temperature and mass transfer potential are 

t=t,+44x2 
22: 

T = T1 (1.29) 

8 = 8, - 3 x2 T = T2 (1.30) 
m 

where 

and 

L? 

=2=6K21. (1.32) 

We assume the parabolic profiles for the 
second phase as 

t = A; + A;x + &x2 (1.33) 

8 = Bb + B;x + B;x2. (1.34) 

Making use of the boundary conditions (1.5) 
(1.7). (1.33) can be written as 

2 t=A;+&x. (1.35) 

Integrating now the heat-transfer equation 
(1.1) with respect to x from x = 0 to x = L we 
obtain heat balance integral as 

L 

a 
- tdx=KIIy-K,,ff. aT s (1.36) 

4 In 
0 

Substituting t from (1.35) into (1.36) we get 
the first order differential equation for Ah as 

(1.37) 

which determines A; using Am = to. 
Substituting A; in (1.35) we get the final 

distribution for temperature as 
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t - to 
-- = Kll& ti%l&&, 

4 - to q&c - to) 1 - c&&4?8 - 1 
x (t - 71) + w2 ~q44 - GJ (1.38) 

which can be written in the non-dimensional 
form as 

T = Ki,[Fo - &l - 3X2)] - 6LuKoKi,Fo 

0.39) 
where 

Ki, = q& 
qtc - to) 

K. _ PC, eO - ‘P 
cq t, - to . 

Proceeding exactly in the same manner we 

get 

~=e,-!$&jz (7 - 72) - &p,z (1.40) 
m m 

where we have made use of Bb(z2) = 0, from 
(1.30) and f2 is given by (1.32). 

The nondimensional form of (1.40) is 

0 = Ki,[LuFo - &l - 3X2)]. (1.41) 

When 6’ < 6. The dis~ibution of temperature 
in this case is similar to that for the case 6’ > S. 
i.e. it is similar to (1.38) except that rtl has to 
be replaced by z3 which can be found from (1.28) 
by putting 6’ = L and then the distributions of 
temperature in nondimensional form is 

T = Fo[Ki, - dduKoKi,] 

- Ki,[Fo, - +$X2] (1.42) 

where Fo, is the non-dimensional form of the 
transit time z3, i.e. 

FoJ = a,,@‘. (1.43) 

Unlike the temperature dis~bution the mass- 
transfer potential distribution will be the same 
as in the 6’ > 6 case on account of independence 

of mass-transfer equation of the heat-transfer 
equation. 

The temperature distributions (1.39) and 
(1.42) are true under the inequalities 

Lu < - 
1 

1 f &oKi,/Ki, 

and 

LA& > 
1 

1 + 6KoKi,JKi, 

respectively, which are the manifesta~ons of the 
inequalities 6’ > 6 and 6’ < 6. The mass-transfer 
potential solution (1.41) is however independent 
of any such restriction. 

Comparison with exact sorption 
The exact solution to this problem is given by 

Luikov and Mikhailov [l] on p. 255 and is 

T = Ki, FO - Q (1 - 3X2) 

co 

+ c (- 1),+ l--& cos (n2zX) 

8l=l 

x exp(-n%*Fo) + 1 duKoKi,,, 

Lu - I 
m 

x Fo - FoLu f 
c 

f-l)“+” cos (JZEX) 

n=1 

x (exp (- n2n2Fo) - exp f -~2~2~o~~)~ 1 (l-44 0 = Ki,[LuFo - +{l - 3X2) 

cos (8xX) exp ( -n2E2FoLu}]. 

(1.45) 

In the solutions (1.44) (1.45) the terms of the 
infinite series are very rapidly convergent and 
quasi-steady state solutions can be written as 

T = Ki,[Fo - &( 1 - 3X2)] - CLUXOFO (1.46) 

0 = Ki,[LuFo - &l - 3X2)]. (1.47) 



POROUS BODY HEAT AND MASS TRANSFER 1101 

The equations (1.46), (1.47) are exactly the 
same as (1.39) and (1.41) which are the approxi- 

0 = 8, - $2 (6 - L + x)2 (2.5) 
m 

mate solutions found by the boundary-layer 
technique. 

where 

The relation (1.42), a solution found for the 
case (6’ < 6) when compared with (1.46) shows 

t =t _(I-&% 
m E a ’ 

that Fo3 has taken the place of 4. As Fo, is a 
function of transfer coefficients this difference 6’ in this problem is given by 

will therefore depend upon them. It has however relation 

(2.6) 

an implicit 

been seen that Fo, 2 % according as 

Lu 2 
1 

1 + &o(Ki,/Ki,) 

under which the approximate solution is found. 

2. APPLICATION OF THE METHOD TO A 
PROBLEM WITH BOUNDARY CONDITIONS OF 

THE THIRD KIND 

In this section we discuss the previous 
problem with boundary conditions of the third 
kind, and with the condition 6’ > 6. The bound- 
ary conditions at the face x = L will now be 

- &g + a(& - to) - (1 - c)pq, = 0 (2.1) 

I$ + A,d,g -t qm = 0 (2.2) 

whereas the boundary conditions at x = 0 are 
the same as in the previous problem. As in the 
first phase we are neglecting thermal diffusion 
term, i.e. 6, will be taken as zero whereas in the 
second phase 6, will be kept in the transfer 
equations and the boundary conditions. 

When 6, = 0, (2.2) becomes 

I39 
An~+%n = 0. (2.3) 

[A’2/B’2 - (4/2,‘/a2)] log 2 - A’/,’ 

A’,‘B’ (2&/a) - Al/B’ 

where 

z=6’+z$ 

A’ = 6K 1 ,(t,,, - to) 

B’ = 3K,,F, 
m 

(2.8) 

The mass-transfer depth is again given by the 
same formula 

6 = J(6K21~). (2.9) 

The transition time z; (for heat transfer when 
6’ > 6) can be found from (2.7) by putting 
6’ = L. The transition time for mass transfer is 
from (2.9) 

L? z;=--, 
6K21 

(2.10) 

Second phase 
The initial distributions for the second phase 

are 

First phase trill - to 
Proceeding exactly as before we obtain the t = to + L[(2d,/a) + L] 

X2. 7 = z; (2.11) 

two profiles as under : 

&I - to 
[a - L + x]” (2.4) 

B=eo-&x2, z = z;. (2.11A) 

t = to + 6’[(21,/a) + 6’1 
m 

Here we include the effect of thermal dif- 
and fusion, i.e. 8, is retained in both the transfer 
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equations and boundary conditions. Hence we 
consider 

Ir 
- &LuKoKi, 3Bi, 

3 + Bi, 

at azt a26 
- = K,,-- + K12- 
aT ax2 a2 

(2.12) x (Fo; - Fo;) 3Bi, 
3 + Bi, 

ae a20 a? 
-=K2,-+Kzz~. 
a7 ax2 ax 

(2.13) 

With boundary conditions given by equations 
(2.1) and (2.2) and where, now 

K1, = a, + 
vcd4A (2.14) 

cq 

K12 = :,,a, 
4 

KzI = a, 

Kz2 = amJs. 

(2.15) 

(2.16) 

(2.17) 

In this case too we assume parabolic profiles 
for temperature and mass-transfer potential. 
Proceeding exactly as before we get tempera- 
ture and mass-transfer potential in the non- 
dimensional form as 

T=p= 
Ki, 

(1 - c)LuKoBi 
4 1 

- X2 + & 
4 1 

+ 
1 - (1 - E) LuKoKiJBi, 

1 + 2/Bi, 

- &LuKoKi, I[ X2-1-$ 
4 1 

- $-(Fo - Fo;) II (2.18) 
4 

where 

Fo; = a,z’JL’ (2.19) 

and 

@ 
- 0 

= ~ 80 = Ki,[LuFo - 
0, - 8, 

$(l - 3X2)] 

Pn(X2 4) 
Bi, - (1 - QLuKi,Ko 

- - 
Bi, + 2 

Comparison with exact solution 
The solutions (2.18), (2.20) for large values of 

time can be written as 

T= 1 -(l -c)LuKoBi, Ki, 1 - &LuKoKi, 1 X2 - + 2 1 (2.22) 
4 

and 

0 = Ki,[LuFo - i(l - 3X2)] 

_ Pn Bi, - (1 - c)LuKoKi, 

1 Bi, + 2 

- &LuKoKi, 1 
x [(X2 -$)exp{--& 

x (Fo; - Fo;) . (2.23) 

The exact solution to this problem for quasi- 
steady state is given by Luikov and Mikhailov 
[l] on p. 282 as 

1 (2.24) 

0 = Ki,[LuFo - &(l + ELuKoPn)(l - 3X2)]. 

(2.25) 

Comparing the exact and approximate solu- 
tions we observe that the expression for tem- 
perature obtained by the approximate method 
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is the same as that given by the exact method 
where as the nondimensional mass-transfer 
potential (2.22) given by the approximate method 
differs from the exact value (2.27) in the term 
containing Pn. This may be due to our neglecting 
the thermal diffusion term in the first phase. 
If however the thermal diffusion term is neg- 
lected in both the phases the above discrepancy 
in case of mass-transfer potential resufts also 
vanishes. 

3. A NON-LINEAR PROBLEM 

In this section we discuss heat and mass 
transfer in a porous infinite plate with the 
boundary conditions of first kind, assuming the 
heat conductivity and the mass conductivity 
to be linear functions of temperature and mass- 
transfer potential. 

The boundary conditions in this case at 
x = L are 

&.C, z) = 8, (3.1) 

t(L., z) = t,. (3.2) 

The boundary conditions at x = 0 are the same 
as in the previous problems. 

The diffusi~ties of heat and mass can be 
written as linear functions of temperature and 
mass-transfer potential because both the specific 
heat capacity and specific mass capacity as well 
as the density of the medium are assumed to be 
constant. Thus all other parameters are con- 
stant except the diffusivities. 

The differential equations for the process 
can be written as 

The diffusivities are considered to be of the 
following form 

a, = a:(1 + I,@ + A,t) (3.5) 

a, = a$1 + pu,O + pzt) for the s’ > 6 case.t3 6) 

Case 1: 6’ > 6. Adopting the same procedure 
as in the earlier two cases we have the following 
two thicknesses of heat and mass layers. 

6(z) = J{ 12ai(l + 2,O1 + Aztl) 7) 

where 

H = J{12a:(l + ll,e, + &t,)) Wcm(8 - ‘l) 
cq& - t1) 

(3.9) 

A” = 12ai(l + +LL~~?~ + pLzt,). (3.10) 

The temperature and mass-transfer potential 
distributions in the first phase are 

t=t()+ 9 (8’ - L + x)2 (3.11) 

B=8,+ v(6 - L + x)‘. (3.12) 

The initial distribution of temperature and 
mass-transfer potential for the second phase are 

t=t,+ 
b--t, 2 

TX ’ 
z = 7;’ (3.13) 

~1-4 2 o=e,+?_x, z=r;. (3.14) 

As already stated, in the second phase we 
shall consider the equations in full, i.e. thermal 
diffusion term will be taken into account and 
in that case the equations are 

where Kll, Klz, I(,, and Kz2 are given by 
equations (2.14) to f2.17). 

Assuming the profiles in the same form as in 
equations (1.33), (1.34) and following the same 
procedure as before we get two simultaneous 
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differential equations for the determination of 
A; and B; as 

L2 dA; 
~ = K:,A; + K:,B; 

3 dr 

- $zK;lB; + K;,A; 

v 12 = 
1 

(3.18) 

- 

where KY,, KY,, Kil, Ki2 are the values of 
(3.25) 

Kl,, K,,, Kil, K22 respectively at x = L. 
Solving (3.17) and (3.18) taking into account the 12 _ 1 

initial distribution (3.13) (3.14) we get the values 
v2 - 1 + & + cKoPn 

of A;, B; which on substitution in the profiles + 
determine the distributions as J{( 

1 + & + cKoPn (3.26) 

T=*+S (X2 - 
1 0 

and 

where 

1) 

1) 

also 
(3.19) 

Lu* = 
c&I + iqel + Ql) 

a:(1 + &~I + PZh) 

L&)(1 + &Or + &T,) 

= (1 + PL;OI + &TJ 
(3.27) 

(3.20) 
where 

c,L? 

t1 - to 

= f [(vi2 - 2) exp (- iKi,v;ii;) 

+ 
00 - 01 K:z 

“I f~~~~o, (3 29, 

KL t1 - to 
pTexp 

t, - to K21 

- ; K;,v;Zz;’ I (3.22) 
The quantities (3/L2)Ki rz;’ and (3/L?)K: tz;’ 

above equations can be written in the non- 
dimensional form as 

_=_ (3.28) 

C,C 

t1 - to 

= -~[(v’$~)exp(-~K~Iv~$$ 

occurring in the above equations are non- 
dimensional. Also in equation (3.20) 
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where 

DJ? t1 - to --_= - 
e1 - 00 d(8, - 8,) [ 

G2~0 - e1 

ztlexexp ( 
-$K$li;vf)+(vB -$)exp (-AKpiryv$)] 

(3.31) 

D,L? 
p= 
el -8, 

Case 2: 6’ < 6. In this case in the first phase 
we assume the mass diffusivity to be a linear 
function of only the temperature whereas the 
diffusivity of heat follows the same linear law 
as expressed by (3.5). The equation (3.6) in 
this case is written as 

a, = a;(1 + Iz,t). (3.33) 

the same manner as Proceeding exactly in 
before we find 

6’(z) = H1 - 1 
2W, + 1) [ 

+ 
4D’(H, + 

‘+ H2 
1) Jz 1 

and 

C?(T) = J{12&(1 + A2t&} 

where 

D’ = 12u;(l + plel + /q,) 

H, = I;‘KoJ(I yzt) 

H, = d-Co 

A; = &(t, - to) 

and 

K. _ PC, e. - b 
cq tl - to. 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

The transition timesz;“,z;” for heat transfer and 
mass transfer respectively can be found from 
(3.34) and (3.35) by putting 6 = 6’ = L. 

The temperature and mass-transfer potential 
distribution after the second phase, in this case 
shall be similar to (3.19), (3.20) except that A, 
has to be made equal to zero and r;‘, t;’ have 
to be replaced by zy’, 2;” respectively. 

The inequalities 6’ 3 6 in this problem take 
the forms respectively as 

Lu* >< 
1 

1 + tK0’ 
(3.41) 

Solution (3.19) corresponds to the upper in- 
equality and (3.20) to the lower one. 

Some numerical red ts 
The results for this problem have been 

exhibited graphically in Fig. 1 for 

Lu* < 
1 

1 + cK0 

and in Figs. 2 and 3 for 

Lu* > 
1 

1 + tKo’ 

In Fig. 1 non-dimensional temperature T has 
been plotted against non-dimensional time Fo 
for PL; = PL; = A; = 0 and O1 = 1 for different 
values of A;, i.e. this is the graph of T vs. Fo 
when Lu* is a linear function of mass-transfer 
potential. 

Figure 2 is the graph of T vs. Fo for the above 
stated values for the situation 

LlP > 
1 

1 + tKo. 

In Fig. 3 nondimensional mass-transfer 
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potential 0 has been plotted against non- 
dimensional time Fo for p; = ,u; = A; = 0 and 
Ti = 1, i.e. when Lu is a linear function of 
temperature. 

O-8 

0.6 

h 

0.6 

FO 

FIG. 3. 0 vs. Fo for different values of Lu*. 
Lu, = 0.1; c = 0.5 ; Ko = 1.2 and Pn = 0.5. 

FO 

FIG. 1. T vs. Fo for different values of E-u*. 
Lu, = 0.1; 6 = 0.5; Ko = I.2 and Pn = 0.5 

0 - 34 

FO 
FIG. 2. T vs. Fo for different values of Lu*. 

tu, = 0.1; t: = 0.5; Ko = 1.2 and Pn = 0.5. 

CONCLUSION 

In this paper we have tried to establish an 
approximate integral method for the solution 
of coupled equations of heat and mass transfer 
in a porous medium. It has been shown that the 
results obtained by this technique for certain 
linear problems are quite close to the ones 
obtained by elaborate exact procedures. The 
method discussed here also provides quick 
approximate results to non-linear problems 
with temperature and moisture dependent physi- 
cal properties of the medium. With slight 
modi~cations the method can be extended. to 
the solution of heat- and mass-transfer equations 
for binary gas mixtures and equations of molar 
and molecular heat and mass transfer. 

The extension of the idea of the penetration 
depth (Biot and Goodman) to this case necessi- 
tates the knowledge of the relative rates of the 
process of heat and mass transfer, thus giving 
a relation between the characteristics of the 
processes. This condition turns out to be 
slightly different from Luikov’s criterion for 
the corresponding situations. It is noted that 
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the condition is dependent on the type of 
boundary conditions assumed at the surface. 

Finally, results for heat and mass transfer 
with a,,, and a4 assumed to be linear function 
of temperature and mass-transfer potential 
have been obtained. Results, where the dif- 
fusivities of the medium vary as any other 
power of temperature and mass transfer poten- 
tial, can be obtained by a similar procedure. 

useful in processes where thermal diffusion is 
very small. Further, the method cannot be 
applied to problems with initially non-uniform 
distributions of temperature. and moisture 
transfer potential as the concept of penetration 
depths for both the heat and moisture cannot 
be properly explained in the case of non- 
uniform initial conditions. 

The method has certain limitations. It has 
not been possible to obtain analytic results 
in the case where 6, is taken into account from 
the start of the process, but exact equations 
can be considered in the second stage, i.e. 
after the transient time. The technique would 
therefore be specially useful for analysis of the 
heat- and mass-transfer problems in thin plates 
where the transition time is very small and 
the omission of thermal diffusion coefficient in 
the first stage does not materially effect the re- 
sults. On the same account the method is quite 

ACKNOWLEDGEMENTS 
The authors are very much grateful to Dr. V. R. Thiruven- 

katachar for useful suggestions and to Dr. R. R. Aggarwal 
for the encouragement and keen interest in the preparation 
of this work. The authors are also thankful to the Director, 
Defence Science Laboratory, for his kind permission to 
publish this paper. 

REFERENCES 

1. A. V. LUIKOV and Yu. A. MIKHAILOV, Theory of Energy 
and Mass Transfer. Pergamon Press, Oxford (1965). 

2. T. R. GOODMAN, Application of integral method to 
transient non-linear heat transfer, in Advances in Heat 
Transfer, Vol. 1. Academic Press, New York (1964). 

RbsumC--La technique de la couche limite developpee par Goodman dans les problbmes de transport de 
chaleur a Cte &endue aux phenombnes avec couplage de transport de chaleur et de masse dans les milieux 
poreux. Pour justifier l’application de la mtthode aux problbmes de transport de chaleur et de masse, 
un problbme lineaire aver des conditions aux limites de seconde et de troisieme esp&ce respectivement a 
ete discute et les resultats compares avec dea solutions exactes deja connues. Un problbme non-lineaire oti 
l’on a suppose le nombre de Luikov d&pendant linbirement de la temperature et du potentiel de transport 

de masse a ttt Cgalement discutt et les resultats ont &_I?. represent& graphiquement. 

Zusammenfass~g-Die von Goodman ftir Warmetibergangsprobleme entwickelte Grenzschichttechnik 
wurde auf gekoppelte Ph;inomene des Warme- und Stoffilberganges in poriisen Medien erweitert. Urn die 
Anwendung der Methode auf W&me- und Stoffiibergangsprobleme zu rechtfertigen, wurde ein lineares 
Problem mit Randbedingungen zweiter, bzw. dritter Art untersucht und die Ergebnisse mit bereits bekann- 
ten exakten Liisungen verglichen. Ein nichtlineares Problem, fiir das die Luikov-Zahl als linear abh;ingig 
von der Temperatur und dem Stoffubergangspotential angenommen wurde, ist ebenfalls betrachtet worden 

und einige Ergebnisse sind grafisch dargestellt. 

AHHoTaqan-TexrIIiKa norpa~H~l~oro CXOH, pa:HHITafI ‘I’. P. I’yaHa~0~ B 3aAaua.u TcII.~Io- 
nepeaoca, o6oBmeHa Ha mnemm comecmioro rrenno-11 MacconepeHoca B nop~c~o# cpefie. 
AJIR 060CIiOBaIum IIpHMeHHMOCTH MeTOna K 33A3%lM Tt?IIJIO-II M3CCOnepeHOCEl PaCCMaTpki- 

BaeTCR JIMHetiHaH 3aAauaC rpaHHYHbIMH yCJI0BHHMH BTOPOI'O II TpeTbWO pOAa,COOTBeTCTBeH- 

HO. nOJIj"WHHbIe pe3yJIbTaTbI CpaBHHB&UiCb C J'Hce II3BWTHbIMB TOYHbIMII pIXIeIi&iHMM. 

hCCMElTpliB3JIaCb TaK?KB HeJIMHBHHaH XIAa’Ia, B KOTOPOti YclCJIO hIKOBa,JIHHCftHO XIBMCHT 

0~ TeHnepaTypu n noreHIHIana HarConepeHoCa. HeKoTopbIe peayJIbTaTbI npeACT3RJEHbI 

rlIa+aHeCIfK. 


