Int. J. Heat Mass Transfer. Vol. 10, pp. 1095-1107. Pergamon Press Ltd. 1967. Printed in Great Britain
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Abstract—Boundary-layer technique developed by Goodman in heat-transfer problems has been
extended fo coupled phenomena of heat and mass transfer in porous medium. To justify the application of
the method in heat- and mass-transfer problems, a linear problem with boundary conditions of second and
third kind respectively has been discussed and results compared with already known exact solutions. A
non-linear problem where the Luikov number is taken as linearly dependent on temperature and mass-
transfer potential, has also been discussed and some results have been exhibited graphically.

NOMENCLATURE Pn, Posnov number (= 8, 4t/46);

x, length coordinate; Ki,, Kirpichev number for mass transfer
L, thickness of the body in problem; (= qut/A, 46);
t temperature ; Ki, Kirpichev number for heat transfer
t, temperature of the surrounding atmos- (= q,L/A, 41);

phere; Bi,, Biot number for heat transfer (= aL/4,);
@,  mass-transfer potential ; Fo, Fourier number (= aqr/LZ);
0, equilibrium value of mass-transfer T, non-dimensional temperature

potential ; (=1~ to/t, —to);
T, time; ©. non-dimensional mass-transfer potential
Ay thermal conductivity; (=0, — 0/, — 0,).
A, mass conductivity;
a, thermal diffusivity; INTRODUCTION
A, molsture dlffusw’ty.’ . RECENTLY Goodman has applied a technique
Cn  Specific mass capacity;

known as the ““Heat Balance Integral Method”

¢y  specific heat capacity; . .
. to solve some linear and non-linear problems
ve» density of porous skeleton; . .
. in heat transfer. In this paper we extend the
d..  Soret coefficient; . . .
. . . above technique to the solution of certain
¢, coefficient of internal evaporation; .
. . problems in coupled phenomena of heat and
p.  specific heat of evaporation; . . .
- mass transfer in porous media. Neglecting
o,  surface heat-transfer coefficient; .
. ) the convective molar transfer of mass and heat
Gm» mass flux per unit area; .
. these equations are
4, heat flux per unit area;
X, non-dimensional length (= x/L);
Lu, Luikov number (= a,/a,); o = aV2t + €pcn 00
Ko, Kossovitch number (= pc,, 46/c, 41); ot ¢ Ot
1)
20 (
+ Present address: Heat and Mass Transfer Institute, — = a,V?0 + a,8,V?t.
25, Podlesnaya, Minsk, BSSR, USSR. ot
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In general these equations are non-linear
because of dependence of a,, a, € J, etc., on
temperature and moisture concentration.

However, for many practical applications.
calculations are carried out by taking these
coefficients to be constant by dividing the
entire range of variation of these coefficients
into various sub-ranges and solving the above
equations with average values of these coef-
ficients, thus making these equations linear.
This is, however, a necessity of a simple approxi-
mate method to give useful analytical results
for the equations where the variation of transfer
coefficients with temperature and moisture
transfer potential is taken into account.

In the application of heat balance integral
to heat-transfer problems for plates of finite
thickness it is assumed that a thermal layer
analogous to the velocity boundary layer exists
whose thickness grows with time. The thickness
of this layer is specified by the surface where the
conditions of zero heat transfer and equality
of temperature to its initial value are satisfied.
Therefore, as long a$ the thickness of the
thermal layer is less than the thickness of the
plate it behaves as an infinite medium, as the
boundary condition on the other end of the
plate does not matter. At the transition time
when the thickness of the thermal layer is just
equal to the plate thickness, the boundary
condition on the other end comes into play.
The solution of the problem is thus split up
into two parts—one valid in the range0 <t < 7’
(where ' is the transition time) and the other for
higher values of time (i.e. T > 7).

In the case of coupled phenomena of heat and
mass transfer governed by the equations (1),
the extension of Goodman’s technique en-
visages the specification of the relative rate of
heat- and mass-transfer processes, ie. it is
essential to differentiate the cases where heat
transfer precedes mass transfer in the very
initial stage of the process or vice versa. It has
been observed that such an assumption re-
garding the relative rate of the progress of the
two layers, energy penetration depth and mass
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penetration depth give a relation between the
transfer coefficients.

If the exact equations (1) are taken into
account right from the beginning it becomes
difficult to obtain explicit relations between the
transfer coefficients. In a large number of applica-
tions it is known that the term J, is small and
is completely neglected in the above equations.
However, in the approach followed here §, is
neglected for the first stage (up till the transition
time, which is small for moderately thin plates)
and complete equations of heat and mass
transfer are solved in the second stage of the
process. In the first stage, if heat transfer is
assumed to lag behind the mass transfer we
find that it envisages a relation

1
L -
"= Ki,
1 + ¢Ko——
Ki,
for boundary conditions of second kind,
or
l
Lu>———H
4 1 + eKo

for boundary conditions of first kind.

The above inequalities are reversed if the mass
transfer lags behind the heat transfer in the
first stage. These inequalities seem to modify
the crieterion of Luikov (discussed on p.
173 of reference [1])

Luzl.

In the second stage the procedure followed by
us is similar to that of Goodman.

In contrast to Goodman’s method in heat
transfer, in the case of combined heat and mass
transfer we have to integrate both the heat- and
mass-transfer equations leading to the “Energy
Balance Integral” and ‘‘Mass Balance Integral™.
The solutions then satisfy both heat- and mass-
transfer equations on an average and therefore
allow representation of heat- and mass-transfer
potential in the form of polynomials in the space
variable with time-dependent coefficients.
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To illustrate the method, we first discuss the
case of heat and mass transfer in an infinitely
long slab of finite width under the boundary
conditions of the second kind, completely
neglecting &, The results are obtained for both
the cases, i.e. when heat transfer precedes
mass transfer and vice versa.

Secondly we discuss the problem of heat and
mass transfer in an infinite plate (finite width)
with the boundary conditions of the third kind.
In this case, in the first phase we neglect the
thermal diffusion term while in the second
phase the complete equations have been taken
into account. The penetration depth (for heat
transfer) has been obtained in an implicit
form for the case when heat transfer precedes
mass transfer.

Finally we have discussed a non-linear prob-
lem where the diffusivities of heat and mass
transfer have been assumed to vary linearly
with temperature and mass transfer potential.
This non-linear problem has been studied with
the boundary conditions of the first kind at
one end. The solution has been obtained for
both the situations, ie. when heat transfer
precedes mass transfer and vice versa and the
results have been graphically depicted.

1. APPLICATION OF THE METHOD TO SOLUTION
OF A PROBLEM WITH BOUNDARY CONDITIONS
OF THE SECOND KIND

Problem. An infinite porous plate of finite
thickness is initially at temperature t, and
mass-transfer potential 8,. One face of the plate
(x = 0) is insulated to heat and mass transfer
while the other face (x = L) is maintained at
constant heat and mass transfer flux. Neglect-
ing the thermal diffusion determine the tem-
perature and mass transfer potential distribu-
tions inside the plate.

The differential equations governing the pro-
cess of heat and mass-transfer together with
initial and boundary conditions appropriate
to the above problem are as under:
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ot 0*t  epc, 00
7%t e, (1
00 00
E = amgx—z (12)
0<x<L t>0
t= tOJ (1.3)
6 =0, 0<x<L =0 (14)
ot
lqa+qq=0 (1.5)
=L >0
00 X
lma +4,=0 (1.6)
ot
Fi 0 (1.7)
20 ‘x=0 t>0.
Fi 0 (1.8)
The equations (1.1), (1.2) can be written as
ot o*t 9%
—6—1,'_= lla—x—E+K12W (19)
o0 520 0<x<L r>1(1)0
ot *lox? (1.10)
where
Kll = aq
€p
K,=—
12 cq Conlm
K21 = am.
SOLUTION
First phase

We assume that at any time 7 the temperature
and mass disturbances have penetrated inside
the plate up to the distances '(z), 8(t) respec-
tively measured from x = L. The concentra-
tion and temperature beyond the penetration
depths remain at initial values, i.e. the condi-
tionsatx =L — § and x = L. — J are

t=t (L.11)
2P (L12)
Ox
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=10, (1.13)
x =L -6
@ =0 (1.14)
0x

Integrating first the mass-transfer equation
(1.10) from x = L to x = L — 6 and using (1.14)
we obtain the mass balance integral as

o0
—dx= - K
f X = Zlax

(1.15)

x=L

Assume a parabolic polynomial profile for
mass-transfer potential as

0=Ay+ AL — x) + Ay(L — x> (1.16)

where A,, A,, A, are functions of time.

The coefficients 4,, A, A, can be determined
from three boundary conditions (1.13), (1.14)
and (1.6) and then 8 can be written as

6=00

L+x% (117

2,1 )
as a function of time can now be determined
by putting 6 from (1.17) into mass balance
integral (1.15).

Thus we get a first-order differential equation
in the form

d(é?)

i (1.18)

= 6K21.

The above equation when integrated gives
(t) = J(6K ;1)

where 4(0) = 0 is the initial condition.

Having determined é we obtain 8 from equa-
tion (1.17).

We assume similarly a parabolic profile for
temperature as

(1.19)

t = By + By(L — x) + By(L — x)*.  (1.20)

On integrating the heat-transfer equation
(19) from x =L to x=L — & we have to
consider two cases namely ¢’ > 6 or §’ < 4.

When 6 > 6. (i.e. when heat transfer pre-
cedes mass transfer) In this case the heat
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balance integral under the conditions (1.12) and
06/0x|, =5 = 0 can be written as
L6

ot ot

Pdx = — hid _
Jaz *=-Kugzgl
L

The polynomial for temperature ¢ (1.20) can
be determined in terms of ¢’ in the first phase
and &' > ¢ from conditions (1.5), (1.11), (1.12)
and can be written as

2
12 Ox

x=L

(1.21)

t——t0+»——(5’

L + x).
24,5 +x)

(1.22)

To determine 8 we substitute (1.22) in (1.21)
as we did in the case of mass penetration depth
and obtain a 1st order differential equation for
&' which when solved gives

5'(x)=\/[61<“<1—%‘i"ﬁ1'1—‘1>1] (1.23)

Clalm

where 6'(0) = 0 1s taken as the initial condition.

Substituting ¢’ from (1.23) in (1.22), tem-
perature profile in the first phase is determined
for this case (6’ > §).

When 8" < o. (i.e. when mass transfer pre-
cedes heat transfer.)

In this case the heat balance integral under the
conditions (1.5), (1.6) and the value of
80/0x[x_ - €an be written as

q Gm 6’
—“dx K ’-'q+K12_m_.
j 2, Ay &

where the value of 69/&’x|x= L_¢ from the mass
transfer potential profile (1.17) has been used.

Substituting the value of § from (1.19) and of
t from (1.22) a first-order differential equation
for &' is obtained in the form

2 !
do™ _ 4 _BY
dz \/1:

(1.24)

(1.25)

where

A = 6K,, (1.26)
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K12 qmlq

B=
; (6K21)'1maq

The solution of (1.25) making use of the
initial condition 6'(0) = 0 is

e[ foe2)- 2 o

Having determined 6'(r) the temperature
profile in this case can be determined from
(1.22) by substituting the value of ¢’ from (1.28)
into (1.22)

The inequalities &' 2 0 when expressed in
terms of transfer coefficients become respectively

1
Lu2 .
* < T+ eKolKi,/Ki,)

(1.27)

We have discussed two cases (6’ 2 &) in the
first phase and have determined the distribution
for temperature in each case. We shall now
pass on to the second phase and shall determine
the final distributions of temperature in each
case. It has however to be noted that the two
situations are only relevant to temperature
distributions, mass-transfer equation being in-
dependent.

Second phase

The idea of penetration distance ceases to be
valid when the energy or mass penetration
depth reaches the other face of the plate and
we have to take into account the boundary
conditions at the other face, and the profiles
have to be redetermined to include the effect
of this boundary. Moreover, two conditions
which are satisfied at the end of the mass or
energy layer are replaced only by one boundary
condition at this face (x = L) and out of three
constants for the parabolic profile only two
can be determined, the third has to be deter-
mined from the balance integral. However, if
higher polynomials are used, the other con-
stants can be determined from some derived
conditions and the differential equations.

The initial distributions for the second phase
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can be obtained from first phase distributions
by putting 6 or 6 = L

When ¢ > 6. The initial distributions of
temperature and mass transfer potential are

t=1t +2‘f{14 X =1 (1.29)
-0 n 2
= O—EFX T=T1, (130)
where
L2
T, = (1.31)
6K, [1 3 epa,,,c,,,lq]
Col o
and
L2
T, = ) (1.32)
27 6K,

We assume the parabolic profiles for the
second phase as

t= Ay + A\x + Ayx?
6 = By + Bix + B)x*

(1.33)
(1.34)

Making use of the boundary conditions (1.5),
(1.7), (1.33) can be written as

t= Ay + x2.

2qu

Integrating now the heat-transfer equation
(1.1) with respect to x from x =0 to x = L we
obtain heat balance integral as

—ftdx_K“/l

Substituting ¢ from (1.35) into (1.36) we get
the first order differential equation for A as

dAO Am
dr =Ky, qu Kulm—L

(1.35)

qm

(1.37)

which determines A4, using Agy(t,) = ¢,.
Substituting A, in (1.35) we get the final
distribution for temperature as
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L=t _ K4, [ - epcmamquq]
t—ty ALt — o) €Al Pom
2
X (Tt — 1y) + 4 (1.38)

22,Lit, — to)

which can be written in the non-dimensional
form as

T = Ki[Fo — §1 — 3X?)] — eLuKoKi,Fo

(1.39)
where
. dml
Ki, = —"
An(Bo — 0,)
. gL
K==

Koz—‘a_c_'".u

Cq t—ty

Proceeding exactly in the same manner we
get
KZlQm 1 Im 2
AR AT R

where we have made use of By(t,) = 6, from
{1.30) and 7, is given by (1.32).
The non-dimensional form of (1.40) is

@ = Ki,[LuFo — 1 — 3X%)]. (141)

When 8" < 6. The distribution of temperature
in this case is similar to that for the case &' > 4,
ie. it is similar to (1.38) except that 1, has to
be replaced by 15 which can be found from (1.28)
by putting &' = L and then the distributions of
temperature in non-dimensional form is

T = Fo[Ki, — eLuKoKi,,]
— Ki[Fos — X?]

9:90—

(140

(1.42)

where Fo, is the non-dimensional form of the
transit time 7, i.e.

Fos = at,/I2. (1.43)

Unlike the temperature distribution the mass-
transfer potential distribution will be the same
as in the ' > & case on account of independence
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of mass-transfer equation of the heat-transfer
equation.

The temperature distributions (1.39) and
(1.42) are true under the inequalities

Ly < — I
1 + eKoKi,/Ki,
and

1

Ly > oo
" 7 1% eKoKiy/Ki,

respectively, which are the manifestations of the
inequalities 8" > d and ' < §. The mass-transfer
potential solution (1.41) is however independent
of any such restriction.

Comparison with exact selution
The exact solution to this problem is given by
Luikov and Mikhailov [1] on p. 255 and is

T = Kiq[Fo ~1(1 - 3xY

+ (——1)”“;2—-2-7{—2%5 (nnX)

a=1

LuKoKi
X exp(—nznzFo)}+ R0

Lu—1
X [Fo — FoLu + Z (— 1)yt cos (nnX)

n=1
x {exp (—n>nFo) — exp (‘—»n%’FoLu)}]

(1.44)

@ = Ki,[LuFo — ¥1 — 3X?)
+ i (= 1)** ! cos (nnX) exp (—n?n?FoLu)].
" (1.45)
In the solutions (1.44) (1.45) the terms of the

infinite series are very rapidly convergent and
quasi-steady state solutions can be written as

T = Ki[Fo — Y1 — 3X%] — eLuKoFo (1.46)
O = Ki,[LuFo — ¥1 — 3X?)]. (1.47)
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The equations (1.46), {1.47) are exactly the
same as (1.39) and (1.41) which are the approxi-
mate solutions found by the boundary-layer
technique.

The relation (1.42), a solution found for the
case (0’ < §) when compared with (1.46) shows
that Fo, has taken the place of i. As Fo, is a
function of transfer coefficients this difference
will therefore depend upon them. It has however
been seen that Fo, > ¢ according as

U = L
I + eKo(Ki,/Ki,)

under which the approximate solution is found.

L

2. APPLICATION OF THE METHOD TO A
PROBLEM WITH BOUNDARY CONDITIONS OF
THE THIRD KIND

In this section we discuss the previous
problem with boundary conditions of the third
kind, and with the condition 6’ > &. The bound-
ary conditions at the face x = L will now be

ot
— Ay + ot ~ to) — (1 — €)pg,, = 0

e 2.1)

o6 ot
w 5.2
x + ¥ ox

whereas the boundary conditions at x = 0 are
the same as in the previous problem. As in the
first phase we are neglecting thermal diffusion
term, i.e. 6, will be taken as zero whereas in the
second phase J; will be kept in the transfer
equations and the boundary conditions.

When &, = 0, (2.2) becomes

Ao +dn=0 2.2)

23)

First phase
Proceeding exactly as before we obtain the
two profiles as under:
t

m tO - 2
ty + ——-«-——5,[(2 i) + 0] [ = L+ x] 2.4

and

4A
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0=0,——I" (5 L+ xp? (2.5)
® 24,6
where
fy =1, — “—ifﬁg—”‘. (2.6)

¢’ in this problem is given by an implicit
relation
[42/B* — (4A%/a?)] o Z - A'/B
A'/B 22, /0) — A'/B

2 24
e T (2 -72) = —me )

A/B " °2

q

where

A, = 6K11(tm - to) (2.8)

B = 3K12%.

The mass-transfer depth is again given by the
same formula

5 = J(6K ;7). (2.9)

The transition time ) {for heat transfer when
4’ > 0) can be found from (2.7) by putting
o' = L. The transition time for mass transfer is
from (2.9)

LZ
T 6Ky,

!
3

(2.10)

Second phase
The initial distributions for the second phase
are

tm tO 2 1
t=1ty + ———— = -
0 L[(2,1q/a) + L] e t=n o (21D
8=0,— —«——-—23"‘ x2, T =15 (2.11A)

Here we include the effect of thermal dif-
fusion, ie. &, is retained in both the transfer
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equations and boundary conditions. Hence we
consider

LY

ot o%t 0%0
a=K11'a?+K12*5—)—CZ (212)
00 0%0 %t
-éjc_ = K21 W + 22 5)}7 (213)

With boundary conditions given by equations
(2.1) and (2.2) and where, now

5
Kyy = a, + Fonin® (2.14)
q
K, =Le,a, (2.15)
cq
K1 = ay (2.16)
K22 = am5s. (217)

In this case too we assume parabolic profiles
for temperature and mass-transfer potential.
Proceeding exactly as before we get tempera-
ture and mass-transfer potential in the non-
dimensional form as

t—t Ki
T = °=[1~(1—6)Lu1<o#:|
t,— Ly Bi,
1 > 2 2
— z¢LuKoKi, |1 — X + —
Bi,
1 — (1 — ¢) LuKoKi,/Bi,
1 + 2/Bi,
2
- %eLuKoKim:] [X2 —1- —]
Bi,
3Bi,
— Fo — Foj 2.18
X [exp{ T Biq( 0 01)}] (2.18)
where
Foy = az\/I? (2.19)
and
6, — 0 , . 5
O =" =Ki,[LuFo — {1 — 3X?%)]
00 - OP

Bi, — (1 — )LuKi,Ko
Bi, + 2

— Pn(X? — %)[
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3Bi
- %eLuKoKim] l:exp {— o llqiiq

x (Foy — Fo’l)} - exp{~ 3?;‘;1_
q

x (Fo — Fo'l)}] (2.20
where

Foy = ay/I2. (2.21)

Comparison with exact solution
The solutions (2.18), (2.20) for large values of
time can be written as

T = [1 -1 - e)LuKoK—l,'":l
Bi

q
2
— leLuKoKi, [1 - X%+ —,] (2.22)
- Bi,
and
O = Ki,[LuFo — (1 — 3X%)]
_ Pn Bi, - (1 - €)LuKoKi,,
Bi, + 2

- %eLuKoKim:l

3Bi
X2 -4 - 1
X [( 3)CXP{ 3 + Bi,

x (Fo'y — Fo;)}]. (2.23)

The exact solution to this problem for quasi-
steady state is given by Luikov and Mikhailov
[1] on p. 282 as

i
T = [1 — (1 - e)LuKo——l,—'f]
qu
1 . 2 2
— 3e¢LuKoKi, |1 — X* + Bi. (2.24)

lq
O = Ki,[LuFo — Y1 + eLuKoPn)1 — 3X?)].
(2.25)
Comparing the exact and approximate solu-

tions we observe that the expression for tem-
perature obtained by the approximate method
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is the same as that given by the exact method
where as the non-dimensional mass-transfer
potential (2.22) given by the approximate method
differs from the exact value (2.27) in the term
containing Pn. This may be due to our neglecting
the thermal diffusion term in the first phase.
If however the thermal diffusion term is neg-
lected in both the phases the above discrepancy
in case of mass-transfer potential results also
vanishes.

3. A NON-LINEAR PROBLEM

In this section we discuss heat and mass
transfer in a porous infinite plate with the
boundary conditions of first kind, assuming the
heat conductivity and the mass conductivity
to be linear functions of temperature and mass-
transfer potential.

The boundary conditions in this case at
x = L are

o(L,7) = 6,
t(L, T) = tl‘

3.1)
(32)

The boundary conditions at x = 0 are the same
as in the previous problems.

The diffusivities of heat and mass can be
written as linear functions of temperature and
mass-transfer potential because both the specific
heat capacity and specific mass capacity as well
as the density of the medium are assumed to be
constant. Thus all other parameters are con-
stant except the diffusivities.

The differential equations for the process
can be written as

ot 0 ot e 0 06

&' = 6_X (aq‘g;) + C—q Cp -6_55- (am 5;) (33)

8 o[
“m 5x

ot ox
The diffusivities are considered to be of the
following form

a, = ad(l + 2,6 + A1)
Gy = ad(1 + py0 + pyt)

),0<x<L >0 (34

(3.5)
for the &' > & case.

1103

Case 1: ¢’ > 6. Adopting the same procedure
as in the earlier two cases we have the following
two thicknesses of heat and mass layers.

2
&) = [— g +\/ (% + A”)] Jro (37

(S(T) = -\/{lzag(l + 1161 -+ lztl) T} (3.8)
where
_ 0 epe,(6 — 6,)
H= \/{12am(1 + A48, + Axt,)} _——“cq(to )
(3.9)
A" = 12a§{1 + p30y + u,ty) (3.10)

The temperature and mass-transfer potential
distributions in the first phase are

Do loy g4 xp

t=t0+ 5,2

(3.11)

0, — 0,

8=0,+ 5_2 6 -L+x2% (312
The initial distribution of temperature and

mass-transfer potential for the second phase are
Iy

t
0 XZ,

t=ty+ T=1f

;2 (3.13)
8, —0

0 =0, + %xz, t=15 (3.14)

As already stated, in the second phase we

shall consider the equations in full, i.e. thermal

diffusion term will be taken into account and

in that case the equations are

7] ot i o0

o8 0 o0 d ot

where K,,, K;, K,; and K,, are given by
equations (2.14) to (2.17).

Assuming the profiles in the same form as in
equations (1.33), (1.34) and following the same
procedure as before we get two simultaneous



1104

differential equations for the determination of
A5 and Bj as
12dA:
— 5 = Kli4s + KB,

3 de (3.17)

I2 dB; , ,
——2K3,B; + K3,4,

~ 374 (3.18)

where K?,. K9,. K9,. K9, are the values of
Ky, K. K;i, K,, respectively at x = L.
Solving (3.17) and (3.18) taking into account the
initial distribution (3.13) (3.14) we get the values
of A3, B, which on substitution in the profiles
determine the distributions as

A2
T=1+"2_(X*-1) (3.19)
ly =1y
and
B,I?
e =1 X2 -1 3.20
g ) (320)
where

3 ’
A, = C,exp <— o K21v121>
3 0 72
+ C, exp - K35 vir (3.21)

Iy — 1

1 KO 3 ’ r
= [(v’zz - ﬁ.—i) exp <— i K21v2212>

0, — 6,K° 3
to - tl K_(1)2 exp (— ie ngv/zzflf)] (3.22)
1 0] 21
=t
1 K® 3 o
= [(v’lz — K—‘l’l) exp (— EK%,VEQ)
21

3 ’ 1
+ m eXp (— E Kglvlzfl)] (323)

K9 3
A=|v: - ——Q) exp {— = (it + v’%”}
< 2 I<(2)1 Lz 11 2 %2
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12 K?l 3 0 12 1 12
— |\~ go_ Jexp -PKu(Vle + vi*ty

(3.24

—

1
+ Lu—* + 6KOPn>

1 : KoP 2—4 (326
+\/ +L—u;+eon T .26)

also
L% = a,z,(l + 210y + Asty)
a (1 + p0y + psty)
_ Lug(l +,)./1@1 +l/1/2T1) (327)
(I + py@ + p5T))
where
0y ty
O, = . T, = ——,
' 0 -0, Y=t

/1'1 = /11(60 - 91)-

Hy = (0o — 0y). My = polty — to).

The quantities K9,/K%, and K9,/K5, in the
above equations can be written in the non-
dimensional form as

K9, 1

— = —— + ¢KoPn

A5 = Ayt — to),

3.28

K%, Lu* (3.28)
K% 6,—-0

—2 21 =Ko (3.29)
K3 ti— 1

The quantities (3/I?)K%,7] and (3/[})K3,7;
occurring in the above equations are non-
dimensional. Also in equation (3.20)

2 K?l
’ D ! (2)1 3 KO 2
B2 ! K(X)I/K(Z)l exp - E ZI’CVI

‘2 0 0
vy — K9,/K3, 3
+ Dz [W exXp | — EK(Z)I‘CVZZ

(3.30)
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3 ! ! Ko 3 o’
exp( Iz K21T1V22> + <V22 - ——Ké1> exXp ( 2 sz 2V 2)]
21

where
Dll‘z _ tl - to [KIZ 00 - 0
6, — 00 A(Go ~60){K3 i —t
D2L2 _ tl _ to 90
0, — 90 40, — 0,) K21 t — to

Case 2: 6’ < 4. In this case in the first phase
we assume the mass diffusivity to be a linear
function of only the temperature whereas the
diffusivity of heat follows the same linear law
as expressed by (3.5). The equation (3.6) in

this case is written as
a, = a’(1 + A,1). (3.33)

Proceeding exactly in the same manner as
before we find

H,
0 = 3 1)[

AD'(H, + 1

)
+ \/{1 + H? }] \/r (3.34)
and
(1) = \/{12a + Ayty)t} (3.35)
where
D = 12a2(1 + pi8; + uyty) (3.36)
124°
=1, - (3.
H, izéKo\/(l n /12t1) (3.37)
_ 1+ Aty
H, = eKo(1 n /12“) (3.38)
Ay = Ay(ty — to) (3.39)
and
Ko = Bc_mu. (3.40)
Cq tl _ to

The transition timest}’, 75 for heat transfer and
mass transfer respectively can be found from
(3.34) and (3.35) by putting 6 = é' = L.

3 .12 2 K?l Q .12
p K2171V1 +{vi ~ Ko exp K21T2V2
21
3.
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{2 21
\o.01

32)

The temperature and mass-transfer potential
distribution after the second phase, in this case
shall be similar to (3.19), (3.20) except that 4,
has to be made equal to zero and 7}, 7 have
to be replaced by 77’, 3’ respectively.

The inequalities &’ > 0 in this problem take
the forms respectively as

Lu* 2 !

. — 341
<1+ ¢Ko (3.41)

Solution (3.19) corresponds to the upper in-
equality and (3.20) to the lower one.

Some numerical results
The results for this problem have been
exhibited graphically in Fig. 1 for

Lu* < ————
" 1 + ¢Ko

and in Figs. 2 and 3 for

*
Lu® > 1 + eKo’
In Fig. 1 non-dimensional temperature T has
been plotted against non-dimensional time Fo
for uy = p, = A, = 0and @, = 1 for different
values of A}, i.e. this is the graph of T vs. Fo
when Lu* is a linear function of mass-transfer
potential.

Figure 2 is the graph of T vs. Fo for the above
stated values for the situation

Lu* > ———.
“ 1 + ¢Ko

In Fig. 3 non-dimensional mass-transfer
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potential @ has been plotted against non-
dimensional time Fo for p{ = p, = A} =0 and
T, =1, ie. when Lu is a linear function of
temperature.

10—
08— L 20
Lu"=02
o6 Li=0-4
~
L2086
o4
Q2
] | i b
¢] -0 20 30 40
Fo

FiG. 1. T vs. Fo for different values of Lu*.
Luy =01;¢=05; Ko = 1'2and Pn = 05.

{-Op—
08
Lu*=1
06— \M"s
~ L =10
0-4|—
Lugdt+Na 1)
Lyts IRl
Ty & 4pah
0-2
| I ]
o] 10 20 30

Fo
Fi1G. 2. T vs. Fo for different values of Lu*.
Lug =01;¢=05; Ko =12and Pn = 05.
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08—
OVG -
@
oab- )
L= Lun(lH-xz{,)
14 B4 udp7,
0.2 b
| | |
G [ ¢] 20 30

fo

FiG. 3. @ vs. Fo for different values of Lu*.
Lug =01;¢=05; Ko = 12and Pn = 03

CONCLUSION

In this paper we have tried to establish an
approximate integral method for the solution
of coupled equations of heat and mass transfer
in a porous medium. It has been shown that the
results obtained by this technique for certain
linear problems are quite close to the ones
obtained by elaborate exact procedures. The
method discussed here also provides quick
approximate results to non-linear problems
with temperature and moisture dependent physi-
cal properties of the medium. With slight
modifications the method can be extended .to
the solution of heat- and mass-transfer equations
for binary gas mixtures and equations of molar
and molecular heat and mass transfer.

The extension of the idea of the penetration
depth (Biot and Goodman} to this case necessi-
tates the knowledge of the relative rates of the
process of heat and mass transfer, thus giving
a relation between the characteristics of the
processes. This condition turns out to be
slightly different from Luikov’s criterion for
the corresponding situations, It is noted that
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the condition is dependent on the type of
boundary conditions assumed at the surface.
Finally, results for heat and mass transfer
with a,, and q, assumed to be linear function
of temperature and mass-transfer potential
have been obtained. Results, where the dif-
fusivities of the medium vary as any other
power of temperature and mass transfer poten-
tial, can be obtained by a similar procedure.
The method has certain limitations. It has
not been possible to obtain analytic results
in the case where §, is taken into account from
the start of the process, but exact equations
can be considered in the second stage, ie.
after the transient time. The technique would
therefore be specially useful for analysis of the
heat- and mass-transfer problems in thin plates
where the transition time is very small and
the omission of thermal diffusion coefficient in
the first stage does not materially effect the re-
sults. On the same account the method is quite
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useful in processes where thermal diffusion is
very small. Further, the method cannot be
applied to problems with initially non-uniform
distributions of temperature. and moisture
transfer potential as the concept of penetration
depths for both the heat and moisture cannot
be properly explained in the case of non-
uniform initial conditions.
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Résumé —La technique de la couche limite développée par Goodman dans les problémes de transport de

chaleur a été étendue aux phénomeénes avec couplage de transport de chaleur et de masse dans les milieux

poreux. Pour justifier 'application de la méthode aux probi¢mes de transport de chaleur et de masse,

un probléme linéaire avec des conditions aux limites de seconde et de troisiéme espéce respectivement a

été discuté et les résultats comparés avec des solutions exactes déja connues. Un probléme non-linéaire ou

I’on a supposé le nombre de Luikov dépendant linéairement de la température et du potentiel de transport
de masse a été également discuté et les résultats ont été représentés graphiquement.

Zusammenfassung—Die von Goodman fiir Wirmeiibergangsprobleme entwickelte Grenzschichttechnik

wurde auf gekoppelte Phinomene des Wirme- und Stoffiiberganges in pordsen Medien erweitert. Um die

Anwendung der Methode auf Wirme- und Stoffiibergangsprobleme zu rechtfertigen, wurde ein lineares

Problem mit Randbedingungen zweitgr, bzw. dritter Art untersucht und die Ergebnisse mit bereits bekann-

ten exakten Losungen verglichen. Ein nichtlineares Problem, fiir das die Luikov—Zahl als linear abhiingig

von der Temperatur und dem Stoffiibergangspotential angenommen wurde, ist ebenfalls betrachtet worden
und einige Ergebnisse sind grafisch dargestellt.

Annorapun—Texnuka norpanuvuoro ciaod, passurad T. P. I'yaManom B 3agauax Teito-
nepenoca, 00ofmerHa HA ABJIEHMA COBMECTHOrO TEIJIO-U MAcCONEPEeHOCA B MOPUCTOH Cpefe.
Jna 000cHOBAHMA NPUMEHMMOCTH MeTOAA K 3aJauyaM Temyo-M MacCONepeHoca pPaccMaTpH-
B3eTCH JIMHelfHad 3aKava ¢ TPAHNYHBIMU YCJIOBUAMY BTOPOTO M TPETbEro poxa, COOTBETCTBEH-
Ho. IonyuyeHHrle pesyibTaThl CPABHUBAJIMCbH C YK€ U3BECTHHIMU TOUHBIMM pELIEHUAMM.
Paccmarpusanack Takdke HeMMHeHHAA 3afJava, B KOTOpO# umcio JIBIKOBA, JIMHEAHO 3aBUCUT
OT TeMNepaTypH M TOTeHUUana macconepeHoca. HeKkoTopble pe3yabTaThl MpeaCTABIEHBI
rpapudecku.



